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In this work we investigate the existence of relativistic models for dark matter in the context
of bimetric gravity, used here to reproduce the modified Newtonian dynamics (MOND) at galactic
scales. For this purpose we consider two different species of dark matter particles that separately
couple to the two metrics of bigravity. These two sectors are linked together via an internal U(1)
vector field, and some effective composite metric built out of the two metrics. Among possible
models only certain classes of kinetic and interaction terms are allowed without invoking ghost
degrees of freedom. Along these lines we explore the number of allowed kinetic terms in the theory
and point out the presence of ghosts in a previous model. Finally, we propose a promising class of
ghost-free candidate theories that could provide the MOND phenomenology at galactic scales while
reproducing the standard cold dark matter (CDM) model at cosmological scales.

PACS numbers: 95.35.+d, 04.50.Kd

I. INTRODUCTION

General Relativity (GR) successfully describes the
gravitational interaction in a wide range of scales and
regimes, from the solar system size to strong fields in
binary pulsars and black holes, and most likely will con-
stitute the correct tool for the future gravitational wave
astronomy [1]. Up to now, GR has been able to prevail
against all alternative theories, either scalar-tensor [2–7],
vector-tensor [8–14] or tensor-tensor theories, the latter
comprising massive gravity [15, 16], bigravity [17, 18] and
multigravity [19] theories.
In spite of these successes, the extrapolation of GR to a

broader range of scales — notably, cosmological scales —
faces important challenges since it relies on the introduc-
tion of a dark sector, composed of dark matter and dark
energy. The nature of this dark sector constitutes one of
the most important mystery of contemporary physics.
The reference model of cosmology today assumes a

pure cosmological constant Λ added to the field equations
of GR to account for the dark energy, and a component of
non-baryonic dark matter made of non relativistic parti-
cles called cold dark matter (CDM). The best motivated
candidate for the dark matter particle is the WIMP [20].

∗Electronic address: blanchet@iap.fr
†Electronic address: laviniah@kth.se

The model Λ-CDM is very well tested at cosmological
scales by the accelerated expansion of the universe, by
the observed fluctuations of the cosmic microwave back-
ground, and by the distribution of dark matter in large
scale structures.
Unfortunately this model does not explain the presence

of a tiny cosmological constant Λ. In the prevailing view
it should be interpreted as a constant energy density of
the vacuum. However, the unnatural observed value of
Λ and the instability against large quantum corrections
put in doubt its consistency using standard quantum field
theory techniques.
Another important concern is that the model Λ-CDM

does not account for many observations of dark matter
at the scale of galaxies, where it faces unexplained tight
correlations between dark and luminous matter in galaxy
halos [21, 22]. Primary examples are the baryonic Tully-
Fisher relation between the asymptotic rotation velocity
of spiral galaxies and their baryonic mass, and the corre-
lation between the mass discrepancy (i.e. the presence of
dark matter) and the acceleration scale involved [23, 24].
These correlations happen to be very well explained by
the MOND (MOdified Newtonian Dynamics) empirical
formula [25–27]. The agreement between MOND and all
observations at galactic scales is remarkable and calls for
an explanation. On the other hand, MOND has prob-
lems explaining the DM distribution at the larger scale
of galaxy clusters [28–32].
Many works have been devoted to promoting the
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MOND formula into a decent relativistic theory. Most
approaches modify GR with extra fields without invok-
ing dark matter [33–41]. Here we shall be interested
in another approach, based on a form of dark mat-
ter à la MOND called dipolar dark matter (DDM).
This approach is motivated by the dielectric analogy of
MOND [42]. A first relativistic model was proposed
in [43, 44] and shown to reproduce the model Λ-CDM
at cosmological scales. Recently, a more sophisticated
model has been based on a bimetric extension of GR [45]
(see also [46] for further motivation). In this model two
species of dark matter particles are coupled respectively
to the two metrics, and are linked by an internal vector
field generated by the mass of these particles. The phe-
nomenology of MOND then results from a mechanism of
gravitational polarization.

Bimetric theories have been extensively investigated in
the quest of a consistent massive gravity theory going be-
yond the linear Fierz-Pauli theory. The past decade has
seen the emergence of a specific theory [15, 16] that avoids
the appearance of the Boulware-Deser (BD) ghost [47] to
any order in perturbations. This dRGT theory [15, 16]
has been extended and reformulated as a bimetric theory
with two dynamical metrics [17, 18]. The theoretical and
cosmological implications of these theories are extremely
rich. Notably, cosmological solutions of massive gravity
theories have drawn much attention [48–50] (see also the
references in [51]).

In the present paper we point out that the previous
model for DDM in a bimetric context [45], despite the im-
portant phenomenology it is able to reproduce, is plagued
by ghosts and cannot be considered as a viable theory.
Nevertheless, this phenomenology (especially at galactic
scales, i.e. MOND) definitely calls for a more fundamen-
tal theory. We look for a consistent coupling of the dark
matter fields to bigravity, closely following the restric-
tions made in [52–54]. We thus propose a new model,
whose dark matter sector is identical to the one in the
previous model [45], but whose gravitational sector is
now based on ghost-free massive bigravity theory. As bi-
gravity theory represents essentially a unique consistent
deformation of GR, we think that the new model will
represent an important step toward a more fundamen-
tal theory of dark matter à la MOND in galactic scales.
In a separate paper [55] we work out in more details the
new model and investigate whether it reproduces also the
cosmological Λ-CDM model at large scales.

II. DIPOLAR DARK MATTER

A new relativistic model for dipolar dark matter was
constructed in [45] via a bimetric extension of GR, which
recovers successfully the phenomenology of MOND. It
relies on the existence of two species for dark matter that
couple to two different metrics and an additional internal

field in form of a vector field,

L =
√
−g

(

M2
g

2
Rg − ρb − ρg

)

+
√

−f

(

M2
f

2
Rf − ρf

)

+
√

−Geff

[

M2
eff

(

Reff

2
− 2Λeff

)

+Aµ

(

jµg − j
µ
f

)

+W
(

X
)

]

, (1)

where ρb, ρg, ρf are the scalar energy densities of pres-
sureless ordinary matter (baryons) and the two species
of dark matter respectively, and jµg , j

µ
f denote the con-

served currents of the dark matter. On top of the two
Einstein-Hilbert terms for the g and f metrics, there is
an additional kinetic term for the effective metric Geff

and a cosmological constant Λeff associated to it (here
we neglect possible cosmological constants in the g and
f sectors). The U(1) vector field Aµ is introduced to link
together the two species of dark matter particles and has
a non-canonical kinetic term W(X ), with

X = Gµρ
effGνσ

eff FµνFρσ , (2)

and Fµν = ∂µAν − ∂νAµ. The rich phenomenology and
physical consequences of this model were studied with
great detail in [45]. For a particular choice of the func-
tion W it recovers the desirable features of MOND and
passes the constraints of the solar system. Furthermore
it agrees with the cosmological model Λ-CDM at first or-
der cosmological perturbation and is thus consistent with
the fluctuations of the CMB.
The effective composite metric Geff was computed per-

turbatively in [45] and here we show the exact non-
perturbative solution for this metric. Furthermore, we in-
vestigate the number of gravitational propagating modes
and the presence of ghost instabilities. The metric Geff

µν

was defined in [45] by the implicit relations

Geff
µν = Gρσ

eff gρµfνσ = Gρσ
eff gρνfµσ . (3)

After introducing the matrices Gν
µ = Gνρ

effgµρ and F ν
µ =

Gνρ
efffµρ the above relations simply become

GF = FG = 1 , (4)

thus G and F are the inverse of each other. Using this
fact the form of Geff can be computed. This was done
perturbatively in [45] with result given by (A8) there.
Actually the solution of (3)–(4) can be obtained exactly.
For this, we note that the following relations are true,

g−1f = (GeffG)
−1 GeffF = G−1F = F 2 . (5)

This means that we can identify

F =
√

g−1f . (6)

Thus the exact solution for the effective metric fulfilling
the relations (3) is suggestively

Geff
µν = gµρ

(

√

g−1f
)ρ

ν
. (7)
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Here we will first pay special attention to the conse-
quences coming from the kinetic term and a cosmological
constant for this effective metric Geff in the action (1).

III. MORE ON EFFECTIVE METRICS

In the different context of massive bigravity theories,
interesting proposals for an effective composite metric
were made in [52–54]. There the form of the effective
metric was determined by the question of how the cou-
pling of the matter fields to the two metrics of massive
bigravity behave at the quantum level and whether they
alter the specific potential interactions of the allowed po-
tential interactions between the two metrics. One par-
ticularly interesting effective composite metric has the
following form,

geffµν = α2gµν + 2αβgµρ

(

√

g−1f
)ρ

ν
+ β2fµν , (8)

where α and β are arbitrary constants. Defining the

quantities Xρ
ν = (

√

g−1f)ρν and Yµν = gµρX
ρ
ν as was

done in [52] (where Yµν is shown to be symmetric), it is
straightforward to see that the determinant of this com-
posite metric corresponds to the allowed potential inter-
actions in massive bigravity,

det(geffµν) = det
[

(αgµρ + βYµρ) g
ρσ (αgνσ + βYνσ)

]

= (det g)−1
[

det(αgµν + βYµν)
]2

= (det g)
[

det(α1+ βg−1Y )
]2

. (9)

Thus, the square root of the determinant of geffµν , say

geff = det(geffµν), corresponds to
√
−geff =

√
−g det

(

α1+ βX
)

. (10)

This is the right form of the acceptable potential inter-
actions between the metrics g and f . Expanding

√−geff
around a flat background, defining

gµν = (ηµν + hµν)
2 ,

fµν = (ηµν + ℓµν)
2 , (11)

they correspond to the specific interactions of the form

√
−geff =

4
∑

n=0

(α+ β)4−nen(k) , (12)

where kµν = αhµν+βℓµν , and the symmetric polynomials
are defined by (with [· · · ] denoting the trace as usual)

e0(k) = 1 ,

e1(k) =
[

k
]

,

e2(k) =
1

2

([

k
]2 −

[

k2
])

,

e3(k) =
1

6

([

k
]3 − 3

[

k
][

k2
]

+ 2
[

k3
])

,

e4(k) =
1

24

([

k
]4 − 6

[

k
]2[

k2
]

+ 3
[

k2
]2

+8
[

k
][

k3
]

− 6
[

k4
])

. (13)

Thus,
√−geff has exactly the nice structure of the poten-

tial with the special tuning in order to remove the BD
ghost at any order [15, 16].
Finally, the relation between the effective composite

metric Geff proposed in [45] and the alternative effective
metric geff proposed in [52] is given by [since Geff

µν = Yµν

from (7)]

geffµν = α2gµν + 2αβ Geff
µν + β2fµν . (14)

In other words, Geff = g
√

g−1f does not contain the lin-
ear parts proportional to g and f in geff. Unfortunately,
this will have important consequences as we will see in
the following section.

IV. COSMOLOGICAL CONSTANT FOR THE

EFFECTIVE METRIC

We will first study the consequences of having in the
model (1) the square root of the determinant Geff =
det(Geff

µν). Since our non-perturbative solution is Geff
µν =

gµρ(
√

g−1f)ρν , the square root of the determinant reads

√

−Geff =

√√
−g

√

−f . (15)

Perturbed around a flat background, it corresponds in
the notation (11) to

√

−Geff = 1 +
1

2

[

h+ ℓ
]

+
1

8

(

[

h+ ℓ
]2 − 2

[

h2 + ℓ2
]

)

+
1

48

(

[

h+ ℓ
]3 − 6

[

h+ ℓ
][

h2 + ℓ2] + 8
[

h3 + ℓ3
]

)

+ · · · . (16)

As is immediately seen,
√
−Geff does not have the right

potential structure, in fact it does not even contain the
right structure for the linear Fierz-Pauli mass term. Any
Lagrangian that contains this term as a possible poten-
tial interaction between the two metrics has immediately
the BD ghost at the linear order. Thus the cosmological
constant for this effective metric or any minimal coupling
to matter fields via Geff

µν will reintroduce the dangerous
ghostly mode. The ghost would come already at a scale

m2M2
P

√

−Geff ∼ m2M2
P(✷π)

2

Λ6
3

=
(✷π)2

m2
, (17)

where Λ3
3 = MPm

2 and π denotes the 0-helicity mode.
This means that the ghost is a very light degree of free-
dom. This immediately kills the possibility of consider-
ing any Lagrangian (independently of all the additional
terms present in it) that contains

√
−Geff.

V. MINI-SUPERSPACE OF THE NEW

KINETIC TERM

In the previous section we studied the implications of
having the cosmological constant for Geff

µν and saw that it
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introduces ghostly interactions between the two metrics.
In this section we will pay attention to the kinetic term√
−GeffReff, where Reff is the Ricci scalar built from Geff

µν .
Moreover, we will investigate the allowed number of ki-
netic terms. The first test that such term has to pass is
the special case of the mini-superspace. The respective
metrics in the mini-superspace are given by

ds2g = gµνdx
µdxν = −n2

gdt
2 + a2gdx

2 ,

ds2f = fµνdx
µdxν = −n2

fdt
2 + a2fdx

2 , (18)

where ng, nf and ag, af are functions of the cosmic time
t only. Consider the following Lagrangian with the three
kinetic terms

Leff
kin =

M2
g

2

√
−gRg +

M2
f

2

√

−fRf +
M2

eff

2

√

−GeffReff ,

(19)
that in the mini-superspace simply becomes

Leff
kin = −

3M2
gag ȧ

2
g

ng

−
3M2

faf ȧ
2
f

nf

− 3M2
effaeffȧ

2
eff

neff

. (20)

Following the prescription (3) we obtain neff =
√
ngnf

and aeff =
√
agaf . We compute the conjugate momenta

for the scale factors and get

pg = −6M2
ga

2
gHg −

3

2
M2

effaf

√

agaf

ngnf

(

Hgng +Hfnf

)

,

pf = −6M2
fa

2
fHf − 3

2
M2

effag

√

agaf

ngnf

(

Hgng +Hfnf

)

,

(21)

where Hg =
ȧg

agng
and similarly Hf are the conformal

Hubble factors. Now we can perform the Legendre trans-
formation to obtain the following Hamiltonian:

Heff
kin =

1

Q
{

a2gnf

(

M2
effp

2
g

√
agafng + 4M2

g p
2
faf

√
ngnf

)

+ 2pgagafng

(

−M2
effpf

√
agafnf + 2M2

f pgaf
√
ngnf

)

+M2
effp

2
fa

2
f

√
agafngnf

}

, (22)

where we defined the shortcut notation for convenience

Q = −12
(

M2
effM

2
f a

3
f

√
agafng +M2

effM
2
g a

3
g

√
agafnf

+4M2
fM

2
g a

2
ga

2
f

√
ngnf

)

. (23)

The Hamiltonian is highly non-linear in the lapses ng and
nf . Since there is no shift over which we have to inte-
grate, this is an immediate sign that these three kinetic
terms have the BD ghost degree of freedom already in
the mini-superspace (see [56] for an introduction to con-
strained hamiltonian systems). Thus, one has to avoid
the two very bad contributions in form of (i) the cosmo-
logical constant term for Geff, and (ii) the kinetic term√
−GeffReff — both these terms correspond to ghostly

interactions. Because of their very different structures
there is no hope for cancellations between these terms.
Taking the limit when Mf → 0 of the Hamiltonian

(22) results in

Heff
kin

∣

∣

Mf→0
=− 1

12a3g

(

(pgag − pfaf )
2ng

M2
g

+
4p2fag

√
agaf

√
ngnf

M2
eff

)

. (24)

As one can see, even in this limit the Hamiltonian is
not linear in the lapses, so that the variation of the
Hamiltonian with respect to the lapses gives rise to equa-
tions of motion that depend on the lapses and hence the
constraint equation is lost. Therefore, the kinetic term√
−GeffReff introduces ghostly interactions already in the

mini-superspace independently of the number of present
kinetic terms.
An interesting question to address at this stage is

whether or not the mini-superspace can be made ghost-
free by considering the kinetic term for geff that was pro-
posed in [52]. Since the determinant of geff corresponds
to the right ghost-free potential interactions between two
metrics, the kinetic term for geff might behave better than
that for Geff. Thus, consider as next the Lagrangian with
the alternative three kinetic terms

L̃eff
kin =

M2
g

2

√
−gRg +

M2
f

2

√

−fRf +
M2

eff

2

√
−geffReff ,

(25)
where Reff is now the Ricci scalar of the metric geffµν . In
the mini-superspace this becomes

L̃eff
kin = −

3M2
gagȧ

2
g

ng

−
3M2

f af ȧ
2
f

nf

− 3M2
effãeff

˙̃a2eff
ñeff

, (26)

with this time ñeff = αng + βnf and ãeff = αag + βaf .
The conjugate momenta for the scale factors are now

p̃g = −6
(

M2
g a

2
gHg +

αM2
effãeff

ñeff

(

αagHgng + βafHfnf

)

)

,

p̃f = −6
(

M2
f a

2
fHf +

βM2
effãeff

ñeff

(

αagHgng + βafHfnf

)

)

.

(27)

Thus, the Hamiltonian is given by

H̃eff
kin =

1

Q̃

{

agnf

[

−α(M2
g p̃

2
f +M2

eff(αp̃f − βp̃g)
2)ng

−M2
g p̃

2
fβnf

]

+ afng

[

−M2
f p̃

2
gαng − β(M2

f p̃
2
g

+M2
eff(αp̃f − βp̃g)

2)nf

]

}

, (28)

where Q̃ stands for

Q̃ = 12
(

M2
fαaf

[

(M2
g +M2

effα
2)ag +M2

effαβaf
]

ng

+M2
gβag

[

M2
f af +M2

effβãeff
]

nf

)

. (29)
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Again, the Hamiltonian is highly non-linear in the lapses.
The problem comes from the fact that we have too many
kinetic terms. Indeed we see immediately that the only
way of having linear dependence in the lapses in the mini-
superspace (and hence getting rid of the BD ghost) is if
we take either the β → 0 limit — this would simply
correspond to having only the standard kinetic terms for
the g and f metrics — or the Mf → 0 limit,

H̃eff
kin

∣

∣

Mf→0
= −M2

effβ(αp̃f − βp̃g)
2afng

12M2
effM

2
gβ

2ag ãeff

−
α
(

M2
g p̃

2
f +M2

eff(αp̃f − βp̃g)
2
)

ng +M2
g p̃

2
fβnf

12M2
effM

2
gβ

2ãeff
. (30)

As we see, the Hamiltonian becomes linear in the lapses
when we remove for instance the kinetic term for the f
metric. Thus, the only way of having a healthy mini-
superspace is if we restrict the kinetic Lagrangian to be
either M2

g

√−gRg +M2
f

√
−fRf which are the standard

ghost-free kinetic terms, or M2
g

√−gRg+M2
eff

√−geffReff.
In a symmetric manner we could also remove the kinetic
term for g and hence M2

f

√
−fRf +M2

eff

√−geffReff would
be also perfectly valid. In summary, one should restrict
the theory to have not more than two kinetic terms in
order not to reintroduce the BD ghost.

VI. DIPOLAR DARK MATTER IN

GHOST-FREE BIMETRIC THEORY

The dark matter model proposed in [45] is therefore
non-viable, but nevertheless points toward an interesting
connection between dark matter at small galactic scales
(interpreted as DDM) and bimetric gravity. Based on
our previous analysis, we would like now to propose the
following new model for dipolar dark matter based on
ghost-free bimetric theory,

Lnew =
√
−g

(

M2
g

2
Rg − ρb − ρg

)

+
√

−f

(

M2
f

2
Rf − ρf

)

+
√
−geff

[

m2M2
eff +Aµ

(

jµg − j
µ
f

)

+W
(

X
)

]

, (31)

where the ghost-free potential interactions are defined
by the metric (8) [they take the form (12)–(13) when
expanded around a flat background], and where the ki-
netic term of the vector field is now constructed with the
metric geffµν ,

X = g
µρ
effg

νσ
effFµνFρσ . (32)

As was shown in [52–54], the matter fields can separately
couple to either the g metric or f metric without invoking
the BD ghost. Additionally the matter fields can couple
to the effective composite metric geff which is ghost-free
in the mini-superspace and in the decoupling limit.
Here we propose to couple the ordinary baryonic fields

with mass density ρb to the standard g metric while cou-
pling the two species of dark matter with densities ρg

and ρf separately to the g and f metrics respectively.
Furthermore, in order to link together the two species
of dark matter particles, we consider a vector field Aµ

that minimally couples to the effective metric geff. The
vector field plays the role of a “graviphoton” since it is
generated by the mass currents jµg and j

µ
f of the parti-

cles. The presence of this internal field is necessary to
stabilize the dipolar medium and is expected to yield the
wanted mechanism of polarization.
The model (31) fulfils the restrictions coming from our

previous analysis, as it contains no more than two kinetic
terms (in particular the problematic kinetic term for Geff

is absent), and the potential interactions between the two
metrics coming from the square root of the determinant
of geff correspond to the ghost-free prescriptions.
However, one needs also to be careful with the assump-

tions on the dark matter fields and their currents. Indeed
the ghost could still be present in the matter sector.1

Since the dark matter fluids that live on the g and f
metrics directly couple to Aµ that lives on the geff metric,
there is a priori the danger of having the ghost present
due to the interaction term in the matter sector. We will
investigate this question with great detail in [55] and see
if for a specific choice of the dark matter fields the ghost
can be maintained absent. For this we shall perform the
decoupling limit analysis of our new model (31) includ-
ing the matter sector and study the required amount of
initial conditions.
Finally, the model (31) should share the nice proper-

ties and phenomenology of the model proposed in [45]
and therefore provides a promising road for a relativis-
tic dipolar dark matter model to be investigated. The
MOND phenomenology, the PPN parameters and the
cosmology of this model will be studied in a separate
paper [55].

VII. CONCLUSIONS

We explored the possible candidates for relativistic
dark matter models in bimetric extensions of General
Relativity, that hopefully will provide modified Newto-
nian dynamics (MOND) at galactic scales while giving
rise to an expansion at cosmological scales. A promising
road comes from the ghost-free constructions of dRGT
massive gravity [15, 16] where the interactions between
two metrics are tuned in a way that the Boulware-Deser
ghost remains absent. Furthermore, the important stud-
ies of possible consistent couplings to matter fields [52–
54] are beneficial to us, since for the model to work, we
have to consider two different species of dark matter par-
ticles that couple separately to the two metrics while an
additional internal vector field couples minimally to an
effective metric built out of the two. The vector field

1 We are grateful to Claudia de Rham for discussions on this.



6

links together the two sectors of the dark matter parti-
cles and plays a crucial role for gravitational polarization
and MOND [45, 46].
For the ghost absence the question of allowed kinetic

interactions is mandatory. We showed that the kinetic
Lagrangian containing three kinetic terms immediately
gives rise to the introduction of the ghost and we there-
fore concluded that only two kinetic terms are allowed.
In a future work [55], we will study in detail the co-

variant equations of motion of the new model, derive the
non-relativistic limit and see if the polarization mecha-
nism for dark matter works in the same way as in the
originally proposed model. We will investigate in detail
the possible danger of ghostly interactions in the matter
sector and constrain further the model. We intend also

to check if the parametrized post-Newtonian parameters
are close to the ones of GR in the solar system, and to
investigate the cosmological solutions in first order per-
turbations.
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